Common Core State Standards Initiative Update

NATIONAL GOVERNORS ASSOCIATION (NGA) AND COUNCIL OF CHIEF STATE SCHOOL OFFICERS (CCSSO)

A STATE LED VOLUNTARY EFFORT TO DEVELOP CORE ACADEMIC STANDARDS IN ENGLISH LANGUAGE ARTS (ELA) AND MATHEMATICS AGREED UPON JUNE 2009

FORTY-FIVE (45) STATES, THE DISTRICT OF COLUMBIA AND THE U.S. VIRGIN ISLANDS HAVE FORMALLY ADOPTED THE VOLUNTARY COMMON CORE STANDARDS IN ELA AND MATHEMATICS.
Drivers of the Initiative

- Disparate standards across states (strong evidence of significant differences in academic expectations set by states)

- Student mobility, which exacerbates the problem of disparate standards across states

- Changes in the set of skills required for current and emerging jobs

- Increasing worldwide competition for existing jobs (1)

The CCSSI did not call for, nor does it support, a “national curriculum.” The common standards were designed to identify the most essential skills and knowledge students need, but not how students acquire them. Oversight of curricular matters will continue to be the prerogative of the individual states. (2)

Common Core State Standards

The purpose of the CCSS....
To define the English language arts, literacy, and mathematical skills and knowledge students in grades K-12 should achieve in order to graduate from high school ready to succeed in entry-level, credit-bearing academic college courses and workforce training programs.

Criteria for development
- Fewer, clearer, higher
- Aligned with college and work expectations
- Include rigorous content and application of knowledge
- Build on strengths of the Next Generation Sunshine State Standards
- Realistic and practical for the classroom

Benefit for students and families
A focus on college and careers that is consistent for all students.
Changes in Student Expectations

The Common Core State Standards & Assessment expect students...

- Maintain an increased sense of accountability toward their own learning
- Develop a concept beyond an opinion and move to “support and evidence”
- Think in a more conceptual and analytic manner
- Utilize higher-order, critical thinking skills
- Shift from mere memorization of terms to a deep understanding of meaning
- Transfer skills to new experiences
- Operate in a more student-centered environment with built in peer collaboration
The Common Core State Standards require teachers to ...

- Increase rigor
- Serve as facilitators of learning for all students
- Provide guided practice, followed by the necessary support, as students take on more independence with tasks
- Share the ownership for text understanding in all content areas
- Find new ways of teaching critical thinking skills
Common Core Shifts for Mathematics

- **Focus**: The standards focus in on the key content, skills and practices at each grade level
- **Coherence**: Content in the standards builds across the grades, and major topics are linked within grades
- **Rigor**: In major topics, the standards highlight conceptual understanding, procedural skill and fluency, and application

Common Core Shifts for ELA/Literacy

- **Complexity**: The standards require regular practice with complex text and its academic language
- **Evidence**: The standards emphasize reading and writing grounded in evidence from text, both literary and informational
- **Knowledge**: The standards require building knowledge through content rich non-fiction

http://www.parcconline.org/samples/item-task-prototypes#7
The Number System

7.NS

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

3. Solve real-world and mathematical problems involving the four operations with rational numbers.¹

¹ Computations with rational numbers extend the rules for manipulating fractions to complex fractions.

http://www.ccsstoolbox.com/parcc/PARCCPrototype_main.html
Jane and Eric are helping their teacher buy supplies for a research project. Every student will get a bag with 2 pencils and 30 index cards.

The teacher gave Jane $17 to buy pencils from the school store. The pencils come in boxes of 12 and cost $1.69 per box.

Eric was given $19 to buy index cards at an office supply store. Index cards are sold in packs of 150 cards and cost $2.99 per pack.

Jane buys as many boxes of pencils as she can afford. Eric buys as many packages of index cards as he can afford. How many complete bags of supplies can they make?

- Fewer than 10
- Between 10 and 24
- Between 25 and 40
- More than 40

http://www.ccsstoolbox.com/parcc/PARCCPrototype_main.html
The speed of an object is defined as the change in distance divided by the change in time.

Information about objects A, B, C and D are shown in the graphs and tables.

Based on the information given, drag and drop the object names in order from greatest speed to least speed in the table provided.

Object A
Object B
Object C
Object D

Object C moves at constant speed.
Object D moves at constant speed.

Greatest Speed
Least Speed

PARCC Partnership for Assessment of Readiness for College and Careers
http://parcconline.org/samples/item-task-prototypes#1
A Balanced Approach to CCSS Implementation

Academic Services

- Curriculum and Instruction
- Teaching and Learning
- Professional Development and Leadership

Career and Technical Education

Innovative Learning
Using Technology to inspire Teachers and Engage Students
Career-Technical, Adult and Community Education

Common Core Alignment

Career Technical Education (CTE) is:

- Application of content taught in mathematics, English and other affected disciplines
- Grounded in workplace occupational skills and workplace employability skills
- Project-based learning with a focus on team interaction
- Focused on partnerships with business, industry and the community
- Based upon college and career readiness
Common Core Competencies Embedded In CTE Courses

- Linking classroom mathematics and statistics to everyday life, work, and decision-making
- Reading informational texts
- Using technology, including the Internet, to produce, publish, and update individual or shared writing products
- Following precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks
- Determining the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context
- Integrating and evaluating multiple sources of information presented in different media or formats (e.g., visually, quantitatively) as well as in words in order to address a question or solve a problem
Business, Industry and Community Partnerships

- The district-wide CTE Advisory Council provides guidance in both industry needs and postsecondary curriculum links

- Business partners review CTE curriculum every two years and recommend changes as per industry needs regarding skills taught, equipment, software and certifications valued in industry
 - Curriculum writing teams incorporate these recommendations
 - Software and industry certification decisions are based upon recommendations

- Each Career and Professional Academy has a business/industry advisory committee that helps guide individual programs
CTE Data

- Last year, 433 students earned industry certifications compared to 8 certifications earned in 2007-08.

- In 2011-12 the industry certification passage rate was 87%.

- This year, 312 business and industry partners participated as CTE advisory members from all occupational sectors.
Innovative Instruction with Technology!

Plant Biotechnology
Engineering

Networking

Drafting
Innovative Learning Department

Digital Support for Teaching and Learning

Supporting instruction through the innovative use of technology in the classroom, the Innovative Learning Department aligns technology training to the RUC2Ready Instructional Framework by focusing on:

- College and Career Readiness
- 21st Century Thinkers
- Shifts in Pedagogy
Educational Technology Standards for Students

- Using the Educational Technology Standards for Students as a framework:
“With technology, students are authentically engaged:

They are excited about starting to work;

They persist despite challenges and obstacles;

They take visible delight in accomplishing assignments.”

-Lake County Teacher
2. Communication and Collaboration

“Using technology, students are easily able to collaborate to achieve learning goals. Technology enhances collaboration and communication both in the classroom and, through Edmodo, beyond.”

- Lake County Teacher
3. Research and Informational Fluency

“With technology, students are able to work at 21st century speeds, with instant access to the wealth of information on the Internet. In a 1-1 environment, students are able to go beyond what the textbooks offer, to explore related curriculum-based topics which excite them.”

-Lake County Teacher
4. Critical Thinking, Problem Solving, and Decision Making

“Students entering college and the workforce are going to be expected not only to be fluent with technology, but more importantly, to be able to use technology to problem solve. Our focus on technology integration is allowing our students to build those skills so necessary for their future.”

- Lake County Teacher
5. Digital Citizenship

“An important part of using powerful technology is understanding how to use it appropriately. Since this is a skill we want to see students demonstrate, we take the time to teach it.”

-Lake County Teacher
Our students have demonstrated advanced skill levels with the iPads and are able to select appropriate apps to demonstrate their learning.

Lake County Teacher
Lake County Schools
Investing In Excellence!
College and Career Readiness

RUG Ready?

How do we revolutionize the way we teach, lead and learn for 21st Century success?
RUC² Ready?

<table>
<thead>
<tr>
<th>What is Required?</th>
<th>Why is it Important?</th>
<th>How to do it…</th>
</tr>
</thead>
<tbody>
<tr>
<td>College and Career Readiness</td>
<td>21st Century Thinkers</td>
<td>Shifts In Pedagogy</td>
</tr>
<tr>
<td>Systems Thinking Approach</td>
<td>Industry Demand</td>
<td>Learning Targets</td>
</tr>
<tr>
<td>Maximizing Continuous Improvement</td>
<td>Career fields not yet Created</td>
<td>Level of Cognitive Demand</td>
</tr>
<tr>
<td>Best Practices</td>
<td>Technology not yet Developed</td>
<td>Complex Text</td>
</tr>
<tr>
<td>Instructional Framework of Non-Negotiables</td>
<td>Information not yet Discovered</td>
<td>Non-Fiction Informational Text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independence</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project-base learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A range of writing for a variety of purposes across all content areas</td>
</tr>
</tbody>
</table>
RUC² Ready?

Phase I
Awareness of shifts and foundational planning to integrate a systems thinking approach

How do we revolutionize the way we teach, lead and learn for 21st Century success?
Lake County Schools Investing In Success!

Maximizing Continuous Improvement – A Systems Thinking Approach!

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>SIP</th>
<th>NGSSS/CCSS</th>
<th>PLC</th>
<th>FCIM</th>
<th>MTSS (RtI)</th>
<th>LESSON STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired Outcomes</td>
<td>Statement of Work</td>
<td>Content</td>
<td>Cultural Behavior</td>
<td>Process</td>
<td>Interventions</td>
<td>Capacity Building</td>
</tr>
</tbody>
</table>

Year 1

Year 2

Year 3
C² Collaborative Cohort
Professional Learning Series (Phase I) 2012-2013

General Sessions

- **September 2012 - C² Collaborative Cohort**
 Connecting to the Common Core through School Improvement Planning (SIP)

- **October 2012 - C² Collaborative Cohort**
 Connecting to the Common Core State Standards and the Major Shifts

- **November 2012 - C² Collaborative Cohort**
 Connecting to the Common Core through Professional Learning Communities (PLC’s)

- **December 2012 - C² Collaborative Cohort**
 Common Core Principal’s Academy with Kevin Baird, Common Core Institute, Inc.

- **January 2013 - C² Collaborative Cohort**
 Connecting to the Common Core through the Florida Continuous Improvement Model (FCIM)

- **February 2013 - C² Collaborative Cohort**
 Common Core Assistant Principal’s Academy - Building Your Instructional Leadership Repertoire

Breakout Sessions

CONTENT:
- Reading/ELA
- Mathematics
- Social Studies
- Writing
- STEM
- Science
- Technology
- Advanced Placement

INSTRUCTIONAL STRATEGIES/PRACTICES:
- Thinking Maps
- Learning Goals and Scales /Unwrapping the Standards
- Closing the Achievement Gap/AMO’s Underperforming Subgroups
- Student Engagement – Cooperative Structures
- Project CRISS
- AVID
- DBQ’s
- SpringBoard
- New Teacher Support

COMMON CORE SHIFTS

LESSON STUDY

COLLEGE AND CAREER READINESS

21st CENTURY SKILLS

INSTRUCTIONAL FRAMEWORK

Student Outcomes

<table>
<thead>
<tr>
<th>Student Outcomes</th>
<th>SIP</th>
<th>NGSSS/CCSS</th>
<th>PLC</th>
<th>FCIM</th>
<th>MTSS (RtI)</th>
<th>LESSON STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Placement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUCTIONAL STRATEGIES/PRACTICES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinking Maps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Goals and Scales /Unwrapping the Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing the Achievement Gap/AMO’s Underperforming Subgroups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Engagement – Cooperative Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project CRISS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBQ’s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpringBoard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Teacher Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COLLEGE AND CAREER READINESS

21st CENTURY SKILLS

INSTRUCTIONAL FRAMEWORK

Student Outcomes
Professional Learning Series
RUC² Ready?

Phase II

A laser focus on “deepening" content and pedagogy aligned to rigor and expectations (Shifts in Pedagogy)!

How do we revolutionize the way we teach, lead and learn for 21st Century success?
C2 Collaborative Cohort

Professional Learning Series (Phase II) 2013-2014

<table>
<thead>
<tr>
<th>C² Ready Instructional Framework</th>
<th>What is Required?</th>
<th>Why is it Important?</th>
<th>How to do it...</th>
<th>Resources</th>
<th>Final Product (Output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2013</td>
<td>Planning/Writing</td>
<td>July/August 2013</td>
<td>Implementation/Monitoring</td>
<td>May 2014</td>
<td></td>
</tr>
</tbody>
</table>

Student Outcomes

- NGSSS/CCSS
- SIP
- PLC
- FCIM
- MTSS
- Lesson Study
- TEAM Domains 1-4
- LEADS Domains 1 -4

I). Standards/ Curriculum Mapping

Common Core Shifts:
- Integration and Progression of Standards

II). Lesson Planning (Backward Design)

Common Core Shifts:
- Integration and Progression of Standards
- Use of Performance Tasks
- Focus on Student Exemplars (Output)

III). Lesson Planning and Delivery

Common Core Shifts:
- Increase Cognitive Demand
- Increase use of Complex Text
- Non-Fiction Informational Text
- Mathematical Practices (8)
- Project-based learning
- A range of writing for a variety of purposes across all content areas (Evidence-based Writing)
- 21st Century Skills
- Integration of multiple instructional strategies/practices

Assessment & Refinement

- Aligned Instructional Units & Plans
- Aligned Instructional Focus Calendars
- Performance Task Rubrics Aligned to Learning Goals & Scales
1st Grade Student Exemplar

Spain is in Europe. Spain is located in the south western tip of Europe. Europe is a far away place from here. Spain has a lot of fiestas. In some of the fiestas they make noise and make special food too. Spain has bull fights and I would want to see one. I think Spain looks like a upside down hat. In some of the fiestas the people are loud. Some of the fiestas are even beautiful and colorful. Spain has a lot of different people. In the bull fights they make the bull tired and make them fall out. Spain is very colorful even if you go there you will see. In right, Spain has 5 neighbors.

Spain's neighbors are France, Andorra, Algeria, Portugal and Morocco. One day when I am a researcher I am going to go to Spain and write about it!
4th Grade Student Exemplar

CHOCOLATE BAR FRACTIONS TASK: PERFORMANCE LEVEL 4

CHOCOLATE BAR FRACTIONS

Part 1
John is giving out chocolate to his friends. If he wants to give each friend \(\frac{2}{3} \) of a chocolate bar and he has 13 friends, how many chocolate bars will he need to buy?

Use words, a model, or an equation to justify your answer.

Answer: 9 chocolate bars

Equation: \(\frac{2}{3} \times 13 = \frac{26}{3} \times 1 = 8 \frac{2}{3} \)

Model: [Diagram showing fraction bars]

Words: Since there were 13 friends (not including John) \(\frac{2}{3} \) of a bar.

Part 2
William buys 4 chocolate bars and each bar weighs \(\frac{1}{2} \) pound. Mary buys 2 chocolate bars and each one weighs \(\frac{3}{4} \) pound. William claims that the chocolate weighs the same amount. Mary disagrees. Who is correct? Use a model and words to justify your answer.

Answer: William

Equation: \(\frac{1}{4} \times 4 = 1 \); \(\frac{1}{2} \times 2 = 1 \)

\(\frac{1}{4} \times 4 = \frac{1}{2} \times 2 \)

Model: [Diagram showing chocolate bars]

Words: \(\frac{1}{4} \) is the same as \(\frac{1}{2} \) of a \(\frac{1}{2} \) of a whole or a \(\frac{1}{4} \) of \(\frac{1}{2} \). A split part is 1, a split part is 1.

Totals: 1 lb

4.NF.4 Student uses a visual fraction model, an equation, and words to represent 26/3 as 8 and 2/3.

MP.1, MP.4, MP.6, MP.7

4.NF.2 Student compares two fractions with unlike numerators and denominators by relating them to the whole as a visual fraction model, and is able to use an equation and words to justify the answer to represent 26/3 as 8 and 2/3.

MP.1, MP.4, MP.6, MP.7
RUC²READY?

Common Core
&
College and Career

www.CommonCoreWorks.org